Martyna Chechłacz, Natalia Korytowska


1.    Kratz F., Elsadek B. Clinical impact of serum proteins on drug delivery. Journal of Controlled Release, 2012, 161(2), 429-445.

2.    Fan J., de Lannoy I. A. M.: Pharmacokinetics. Biochemical Pharmacology, 2014, 87, 93-120.

3.    Dasgupta A., Usefulness of monitoring free (unbound) concentrations of therapeutic drugs in patient management. Clinica Chimica Acta, 2007, 377(1-2), 1-13.

4.    Riccordi K., Cawley S., Yates P. D., Chang C., Funk C., Niosi M., Lin J., Di L. Plasma Protein Binding of Challenging Compounds. Journal of Pharmaceutical Sciences, 2015, 104 (8), 2627-2636.

5.    Valerio C., Theocharidou E., Davenport A., Agarwal B. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion. World Journal of Hepatology, 2016, 8(7), 345-354.

6.    Yang F., Zhang Y., Liang H. Interactive association of drugs binding to human serum albumin. International Journal of Molecular Sciences, 2014, 15(3), 3580-3595.

7.    Stegmayr B., New insight in impaired binding capacity for albumin in uraemic patients. Acta Physiologica, 2015, 215(1), 5-8.

8.    Simonsen K., Rode A., Nicoll A., Villadsen G., Espelund U., Lim L., Angus P., Arachchi N., Vilstrup H., Nexo E., Grønbæk H. Vitamin B12 and its binding proteins in hepatocellular carcinoma and chronic liver diseases. Scandinavian Journal of Gastroenterology, 2014, 49(9), 1096-1102.

9.    Tran M.T., Stürup S., Lambert I. H., Gammelgaard B., Furger E., Alberto R. Cellular uptake of metallated cobalamins. Metallomics, 2016, 8, 298-304.

10.  Gkouvatsos K., Papanikolaou G., Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochimica et Biophysica Acta (BBA) - General Subjects, 2012, 1820(3), 188-202.

11.  Pappa T., Ferrara A. M., Refetoff S. Inherited defects of thyroxine-binding proteins. Best Practice & Research Clinical Endocrinology & Metabolism, 2015, 29(5), 735-747.

12.  Zhivkova Z.D., Studies on drug-human serum albumin binding: the current state of the matter. Current Pharmaceutical Design, 2015, 21(14), 1817-1830.

13.  Senis Y., Garcia-Alonso A. Platelet Proteomics: Principles, Analysis, and Applications, WILEY, Canada, 2011.

14.  Andersen M.M., Leucocyte-Associated Plasma Proteins. Scandinavian Journal of Immunology, 1982, 15 (4), 399-407.

15.  Lambrinidis G., Vallianatou T., Tsantili-Kakoulidou A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Advanced Drug Delivery Reviews, 2015, 86, 27-45.

16.  Bohnert T., Gan L. S. Plasma protein binding: From discovery to development. Journal of Pharmaceutical Sciences, 2013, 102, 2953-2994.

17.  Lee P., Wu X. Review: modifications of human serum albumin and their binding effect. Current pharmaceutical design, 2015, 21(14), 1862-1865.

18.  Anraku M., Shintomo R., Taguchi K., Kragh-Hansen U., Kai T., Maruyama T., Otagiri M. Amino acids of importance for the antioxidant activity of human serum albumin as revealed by recombinant mutants and genetic variants. Life Sciences, 2015, 134, 36-41.

19.  Roche M., Rondeau P., Singh N. R., Tarnus E., Bourdon E. The antioxidant properties of serum albumin. Febs Letters, 2008, 582(13), 1783-1787.

20.  Larsen M. T., Kuhlmann M., Hvam M. L., Howard K. A. Albumin-based drug delivery: harnessing nature to cure disease. Molecullar and Cellular Therapies, 2016, 4, 3.

21.  Zhu L., Yang F., Chen L., Meehan E. J., Huang M. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. Journal of Structural Biology, 2008, 162(1), 40-49.

22.  Kopecký V. Jr., Ettrich R., Hofbauerová K., Baumruk V. Structure of human alpha1-acid glycoprotein and its high-affinity binding site. Biochemical and Biophysical Research Communications, 2003, 300(1), 41-46.

23.  Solomon E. P., Berg L., Martin D. Biologia, Warszawa, Multico, 2013.

24.  Smith D. A., Di L., Kerns E. H. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nature Reviews Drug Discovery, 2010, 9, 929-939.

25.  Peltenburg H., Bosman I. J., Hermens J. L. M. Sensitive determination of plasma protein binding of cationic drugs using mixed-mode solid-phase microextraction. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 534-542.

26.  Zeitlinger M. A., Derendorf H., Mouton J. W., Cars O., Craig W. A., Andes D., Theuretzbacher U. Protein Binding: Do We Ever Learn? Antimicrobial Agents and chemotherapy, 2011, 55(7), 3067-3074.

27.  Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta, 1996, 1295 (2), 147-157.

28.  Dawidowicz A. L., Kobielski M., Pieniadz J. Anomalous relationship between free drug fraction and its total concentration in drug–protein systems: I. Investigation of propofol binding in model HSA solution. European Journal of Pharmaceutical Sciences, 2008, 34(1), 30-36.

29.  Zhang F., Xue J., Shao J., Jia L. Compilation of 222 drugs' plasma protein binding data and guidance for study designs. Drug Discovery Today, 2012, 17(9-10), 475-485.

30.  Ghuman J., Zunszain P. A., Petitpas I., Bhattacharya A. A., Otagiri M., Curry S. Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 2005, 353(1), 38-52.

31.  Trynda-Lemiesz L., Wiglusz K., Mucha I. The role of albumin in the diagnostics. Binding of ions and metal complexes. Wiadomości Chemiczne, 2010, 64(1-2), 81-104.

32.  Cui Y. F., Bai G. Y., Li C. G., Ye C. H., Liu M. L. Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34(2), 247-254.

33.  Zsila F., Bikadi Z., Malik D., Hari P., Pechan I., Berces A., Hazai E. Evaluation of drug–human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics, 2011, 27(13), 1806-1813.

34.  Shen Q., Wang L., Zhou H., Jiang H.D., Yu L. S., Zeng S. Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacologica Sinica, 2013, 34(8), 998-1006.

35.  Arroyo V., García-Martinez R., Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. Journal of hepatology, 2014, 61(2), 396-407.

36.  Merlot A. M., Kalinowski D. S., Richardson D. R. Unraveling the mysteries of serum albumin-more than just a serum protein. Froniers in physiology, 2014, 5, 299.

37.  Novotná P., Urbanová M. Bilirubin, model membranes and serum albumin interaction: The influence of fatty acids. Biochimica et biophysica acta, 2015, 1848 (6), 1331-1340.

38.  van der Vusse G.J., Albumin as fatty acid transporter. Drug metabolism and pharmacokinetics, 2009, 24(4), 300-307.

39.  Vanholder R., Van Laecke S., Glorieux G. What is new in uremic toxicity? Pediatr Nephrol, 2008, 23(8), 1211-1221.

40.  Evenepoel P., Meijers B. K., Bammens B. R., Verbeke K. Uremic toxins originating from colonic microbial metabolism. Kidney International. Supplement, 2009, 114, 12-19.

41.  Watanabe H., Noguchi T., Miyamoto Y., Kadowaki D., Kotani S., Nakajima M., Miyamura S., Ishima Y., Otagiri M., Maruyama T. Interaction between two sulfate-conjugated uremic toxins, p-cresyl sulfate and indoxyl sulfate, during binding with human serum albumin. Drug Metabolism & Disposition, 2012, 40(7), 1423-1428.

42.  Devine E., Krieter D. H., Rüth M., Jankovski J., Lemke H. D. Binding affinity and capacity for the uremic toxin indoxyl sulfate. Toxins, 2014, 6(2), 416-429.

43.  Nicholson J. P., Wolmarans M. R., Park G. R. The role of albumin in critical illness. British Journal of Anaesthesia, 2000, 85(4), 599-610.

44.  Francis G.L., Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology, 2010, 62(1), 1-16.

45.  Maciążek-Jurczyk M., Szkudlarek-Haśnik A., Siek D., Chłosta M., FarugaK., Moskała W., Sułkowska A. Binding of ketoprofen to plasma protein in inflammatory states. Annales Academiae medicae silesiensis, 2002, 66(3), 27-33.

46.  Załuska W., Water as a uraemic toxin? Forum Nefrologiczne, 2010, 3(1), 12-17.

47.  Viaene L., Annaert P., de Loor H., Poesen R., Evenepoel P., Meijers B. Albumin is the main plasma binding protein for indoxyl sulfate and p-cresyl sulfate. Biopharmaceutics & Drug Disposition, 2013, 34(3), 165-175.

48.  Otagiri M., A molecular functional study on the interactions of drugs with plasma proteins. Drug Metabolism and Pharmacokinetics, 2005, 20(5), 309-323.

49.  Clarke D. F., Wong R. J., Wenning L., Stevenson D. K., Mirochnick M. Raltegravir in vitro effect on bilirubin binding. The pediatric infectious disease journal, 2013, 32(9), 978-980.

50.  Bai G., Cui Y., Yang Y., Ye C., Liu M. A competitive low-affinity binding model for determining the mutual and specific sites of two ligands on protein. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38(4), 588-593.

51.  Ascenzi P., Fanalib G., Fasanob M., Pallottinic V., Trezzac V. Clinical relevance of drug binding to plasma proteins. Journal of Molecular Structure, 2014, 1077(6), 4-13.

52.  Stegmayr B., Uremic toxins and lipases in haemodialysis: a process of repeated metabolic starvation. Toxins (Basel), 2014, 6(5), 1505-1511.

53.  Curran R. E., Claxton C. R., Hutchison L., Harradine P. J., Martin I. J., Littlewood P. Control and Measurement of Plasma pH in Equilibrium Dialysis: Influence on Drug Plasma Protein Binding. Drug Metabolism & Disposition, 2011, 39(3), 551-557.

54.  Fogh-Andersen N., Bjerrum P. J., Siggaard-Andersen O. Ionic binding, net charge, and Donnan effect of human serum albumin as a function of pH. Clinical Chemistry, 1993, 39(1), 140-152.

55.  Bolton G. R., Boesch A.W., Basha J., Lacasse D. P., Kelley B. D., Acharya H. Effect of protein and solution properties on the donnan effect during the ultrafiltration of proteins. Biotechnology Progress, 2011, 27(1), 140-152.

56.  Gonzalez D., Schmidt S., Derendorf H. Importance of Relating Efficacy Measures to Unbound Drug Concentrations for Anti-Infective Agents. Clinical Microbiology Reviews, 2013, 26(2), 274-288.

57.  Rukhadze M. D., Tsagareli S. K., Sidamonidze N. S., Meyer V. R. Cloud-point extraction for the determination of the free fraction of antiepileptic drugs in blood plasma and saliva. Analytical Biochemistry, 2000, 287(2), 279-283.

58.  Samaddar D., Sen K. Cloud point extraction: A sustainable method of elemental preconcentration and speciation. Journal of Industrial and Engineering Chemistry, 2014, 20(4), 1209-1219

59.  Biparva P., Matin A. A. Microextraction Techniques as a Sample Preparation Step for Metal Analysis. Atomic Absorption Spectroscopy, InTech, 2012, 61-88.

60.  Afkham A., Madrakian T., Siampour H. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents. Journal of Hazardous Materials, 2006, 138(2), 269-272.

61.  Giebułtowicz J., Kojro G., Buś-Kwaśnik K., Rudzki P. J., Marszałek R., Leś A., Wroczyński P. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of bisoprolol in human plasma. Journal of Chromatography A, 2015, 1423, 39-46.